Abstract
Herein we study the problem of recovering a density operator from a set of compatible marginals, motivated by limitations of physical observations. Given that the set of compatible density operators is not singular, we adopt Jaynes’ principle and wish to characterize a compatible density operator with maximum entropy. We first show that comparing the entropy of compatible density operators is complete for the quantum computational complexity class QSZK, even for the simplest case of 3-chains. Then, we focus on the particular case of quantum Markov chains and trees and establish that for these cases, there exists a procedure polynomial in the number of subsystems that constructs the maximum entropy compatible density operator. Moreover, we extend the Chow–Liu algorithm to the same subclass of quantum states.
Funder
Instituto de Telecomunicações
Fundação para a Ciência e a Tecnologia
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献