Method of Singular Integral Equations for Analysis of Strip Structures and Experimental Confirmation

Author:

Nickelson LiudmilaORCID,Pomarnacki RaimondasORCID,Sledevič TomyslavORCID,Plonis DariusORCID

Abstract

This paper presents a rigorous solution of the Helmholtz equation for regular waveguide structures with the finite sizes of all cross-section elements that may have an arbitrary shape. The solution is based on the theory of Singular Integral Equations (SIE). The SIE method proposed here is used to find a solution to differential equations with a point source. This fundamental solution of the equations is then applied in an integral representation of the general solution for our boundary problem. The integral representation always satisfies the differential equations derived from the Maxwell’s ones and has unknown functions μe and μh that are determined by the implementation of appropriate boundary conditions. The waveguide structures under consideration may contain homogeneous isotropic materials such as dielectrics, semiconductors, metals, and so forth. The proposed algorithm based on the SIE method also allows us to compute waveguide structures containing materials with high losses. The proposed solution allows us to satisfy all boundary conditions on the contour separating materials with different constitutive parameters and the condition at infinity for open structures as well as the wave equation. In our solution, the longitudinal components of the electric and magnetic fields are expressed in the integral form with the kernel consisting of an unknown function μe or μh and the Hankel function of the second kind. It is important to note that the above-mentioned integral representation is transformed into the Cauchy type integrals with the density function μe or μh at certain singular points of the contour of integration. The properties and values of these integrals are known under certain conditions. Contours that limit different materials of waveguide elements are divided into small segments. The number of segments can determine the accuracy of the solution of a problem. We assume for simplicity that the unknown functions μe and μh, which we are looking for, are located in the middle of each segment. After writing down the boundary conditions for the central point of every segment of all contours, we receive a well-conditioned algebraic system of linear equations, by solving which we will define functions μe and μh that correspond to these central points. Knowing the densities μe, μh, it is easy to calculate the dispersion characteristics of the structure as well as the electromagnetic (EM) field distributions inside and outside the structure. The comparison of our calculations by the SIE method with experimental data is also presented in this paper.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3