Dynamic Graph Learning: A Structure-Driven Approach

Author:

Jiang Bo,Huang YumingORCID,Panahi Ashkan,Yu Yiyi,Krim Hamid,Smith Spencer L.ORCID

Abstract

The purpose of this paper is to infer a dynamic graph as a global (collective) model of time-varying measurements at a set of network nodes. This model captures both pairwise as well as higher order interactions (i.e., more than two nodes) among the nodes. The motivation of this work lies in the search for a connectome model which properly captures brain functionality across all regions of the brain, and possibly at individual neurons. We formulate it as an optimization problem, a quadratic objective functional and tensor information of observed node signals over short time intervals. The proper regularization constraints reflect the graph smoothness and other dynamics involving the underlying graph’s Laplacian, as well as the time evolution smoothness of the underlying graph. The resulting joint optimization is solved by a continuous relaxation of the weight parameters and an introduced novel gradient-projection scheme. While the work may be applicable to any time-evolving data set (e.g., fMRI), we apply our algorithm to a real-world dataset comprising recorded activities of individual brain cells. The resulting model is shown to be not only viable but also efficiently computable.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implicit Bayes Adaptation: A Collaborative Transport Approach;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

2. Non-Negative Kernel Graphs for Time-Varying Signals Using Visibility Graphs;2022 30th European Signal Processing Conference (EUSIPCO);2022-08-29

3. Representation Learning for Dynamic Functional Connectivities via Variational Dynamic Graph Latent Variable Models;Entropy;2022-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3