Abstract
Bermudan swaptions are options on interest rate swaps which can be exercised on one or more dates before the final maturity of the swap. Because the exercise boundary between the continuation area and stopping area is inherently complex and multi-dimensional for interest rate products, there is an inherent “tug of war” between the pursuit of calibration and pricing precision, tractability, and implementation efficiency. After reviewing the main ideas and implementation techniques underlying both single- and multi-factor models, we offer our own approach based on dimension reduction via Markovian projection. Specifically, on the theoretical side, we provide a reinterpretation and extension of the classic result due to Gyöngy which covers non-probabilistic, discounted, distributions relevant in option pricing. Thus, we show that for purposes of swaption pricing, a potentially complex and multidimensional process for the underlying swap rate can be collapsed to a one-dimensional one. The empirical contribution of the paper consists in demonstrating that even though we only match the marginal distributions of the two processes, Bermudan swaptions prices calculated using such an approach appear well-behaved and closely aligned to counterparts from more sophisticated models.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献