Wrist-to-Tibia/Shoe Inertial Measurement Results Translation Using Neural Networks

Author:

Kolakowski Marcin1ORCID,Djaja-Josko Vitomir1ORCID,Kolakowski Jerzy1ORCID,Cichocki Jacek1

Affiliation:

1. Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, 00-661 Warsaw, Poland

Abstract

Most of the established gait evaluation methods use inertial sensors mounted in the lower limb area (tibias, ankles, shoes). Such sensor placement gives good results in laboratory conditions but is hard to apply in everyday scenarios due to the sensors’ fragility and the user’s comfort. The paper presents an algorithm that enables translation of the inertial signal measurements (acceleration and angular velocity) registered with a wrist-worn sensor to signals, which would be obtained if the sensor was worn on a tibia or a shoe. Four different neural network architectures are considered for that purpose: Dense and CNN autoencoders, a CNN-LSTM hybrid, and a U-Net-based model. The performed experiments have shown that the CNN autoencoder and U-Net can be successfully applied for inertial signal translation purposes. Estimating gait parameters based on the translated signals yielded similar results to those obtained based on shoe-sensor signals.

Funder

Polish National Centre for Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3