Exponential Fusion of Interpolated Frames Network (EFIF-Net): Advancing Multi-Frame Image Super-Resolution with Convolutional Neural Networks

Author:

Elwarfalli Hamed1ORCID,Flaute Dylan12ORCID,Hardie Russell C.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA

2. Applied Sensing Division, University of Dayton Research Institute, 300 College Park, Dayton, OH 45469, USA

Abstract

Convolutional neural networks (CNNs) have become instrumental in advancing multi-frame image super-resolution (SR), a technique that merges multiple low-resolution images of the same scene into a high-resolution image. In this paper, a novel deep learning multi-frame SR algorithm is introduced. The proposed CNN model, named Exponential Fusion of Interpolated Frames Network (EFIF-Net), seamlessly integrates fusion and restoration within an end-to-end network. Key features of the new EFIF-Net include a custom exponentially weighted fusion (EWF) layer for image fusion and a modification of the Residual Channel Attention Network for restoration to deblur the fused image. Input frames are registered with subpixel accuracy using an affine motion model to capture the camera platform motion. The frames are externally upsampled using single-image interpolation. The interpolated frames are then fused with the custom EWF layer, employing subpixel registration information to give more weight to pixels with less interpolation error. Realistic image acquisition conditions are simulated to generate training and testing datasets with corresponding ground truths. The observation model captures optical degradation from diffraction and detector integration from the sensor. The experimental results demonstrate the efficacy of EFIF-Net using both simulated and real camera data. The real camera results use authentic, unaltered camera data without artificial downsampling or degradation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3