Dam Crack Image Detection Model on Feature Enhancement and Attention Mechanism

Author:

Xu Guoyan,Han Xu,Zhang Yuwei,Wu Chunyan

Abstract

Dam crack detection can effectively avoid safety accidents of dams. To solve the problem that the dam crack image samples are not available and the traditional algorithm detects cracks with low accuracy, we provide a dam crack image detection model based on crack feature enhancement and attention mechanism. Firstly, we expand the dam crack image dataset through a generative adversarial network based on crack feature enhancement (Cracks Enhancements GAN, CE-GAN). It can fully expand the dam crack data samples and improve the quality of the training data. Secondly, we propose a crack image detection model based on the attention mechanism (Attention-based Faster-RCNN, AF-RCNN). The attention mechanism is added in the crack detection module to give different weights to the proposal boxes around the crack target and fuse the candidate boxes with high weights to accurately detect the crack target location. The experimental results show that our algorithm achieves 81.07% mAP on the expanded dam crack dataset, which is 8.39% higher than the original Faster-RCNN algorithm. The detection accuracy is significantly improved compared with other traditional dam crack detection algorithm models.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference32 articles.

1. Discussion on construction technology of dam crack defect plugging and reinforcement;Li;Eng. Technol. Res.,2020

2. Intelligent detection of building cracks based on deep learning;Zheng;Image Vis. Comput.,2020

3. Structural crack detection using deep convolutional neural networks;Ali;Autom. Constr.,2022

4. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., and Bengio, Y. (2014, January 8–13). Generative Adversarial Nets. Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada.

5. Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3