A Binocular Vision-Based 3D Sampling Moiré Method for Complex Shape Measurement

Author:

Shi Wenxiong,Zhang Qi,Xie Huimin,He Wei

Abstract

As a promising method for moiré processing, sampling moiré has attracted significant interest for binocular vision-based 3D measurement, which is widely used in many fields of science and engineering. However, one key problem of its 3D shape measurement is that the visual angle difference between the left and right cameras causes inconsistency of the fringe image carrier fields, resulting in the phase mismatch of sampling moiré. In this paper, we developed a phase correction method to solve this problem. After epipolar rectification and carrier phase introduction and correction, the absolute phase of the fringe images was obtained. A more universal 3D sampling moiré measurement can be achieved based on the phase match and binocular vision model. Our numerical simulation and experiment showed the high robustness and anti-noise ability of this new 3D sampling moiré method for high-precision 3D shape measurement. As an application, cantilever beams are fabricated by directed energy deposition (DED) using different process parameters, and their 3D deformation caused by residual stresses is measured, showing great potential for residual stress analyses during additive manufacturing.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3