Author:
Shi Wenxiong,Zhang Qi,Xie Huimin,He Wei
Abstract
As a promising method for moiré processing, sampling moiré has attracted significant interest for binocular vision-based 3D measurement, which is widely used in many fields of science and engineering. However, one key problem of its 3D shape measurement is that the visual angle difference between the left and right cameras causes inconsistency of the fringe image carrier fields, resulting in the phase mismatch of sampling moiré. In this paper, we developed a phase correction method to solve this problem. After epipolar rectification and carrier phase introduction and correction, the absolute phase of the fringe images was obtained. A more universal 3D sampling moiré measurement can be achieved based on the phase match and binocular vision model. Our numerical simulation and experiment showed the high robustness and anti-noise ability of this new 3D sampling moiré method for high-precision 3D shape measurement. As an application, cantilever beams are fabricated by directed energy deposition (DED) using different process parameters, and their 3D deformation caused by residual stresses is measured, showing great potential for residual stress analyses during additive manufacturing.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
National Science and Technology Major Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献