Three-Dimensional Reconstruction-Based Vibration Measurement of Bridge Model Using UAVs

Author:

Wu Zhihua,Chen GongfaORCID,Ding QiongORCID,Yuan Bing,Yang Xiaomei

Abstract

This paper presents a measurement method of bridge vibration based on three-dimensional (3D) reconstruction. A video of bridge model vibration is recorded by an unmanned aerial vehicle (UAV), and the displacement of target points on the bridge model is tracked by the digital image correlation (DIC) method. Due to the UAV motion, the DIC-tracked displacement of the bridge model includes the absolute displacement caused by the excitation and the false displacement induced by the UAV motion. Therefore, the UAV motion must be corrected to measure the real displacement. Using four corner points on a fixed object plane as the reference points, the projection matrix for each frame of images can be estimated by the UAV camera calibration, and then the 3D world coordinates of the target points on the bridge model can be recovered. After that, the real displacement of the target points can be obtained. To verify the correctness of the results, the operational modal analysis (OMA) method is used to extract the natural frequencies of the bridge model. The results show that the first natural frequency obtained from the proposed method is consistent with the one obtained from the homography-based method. By further comparing with the homography-based correction method, it is found that the 3D reconstruction method can effectively overcome the limitation of the homography-based method that the fixed reference points and the target points must be coplanar.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3