Decision Making with STPA through Markov Decision Process, a Theoretic Framework for Safe Human-Robot Collaboration

Author:

Zacharaki Angeliki,Kostavelis IoannisORCID,Dokas IoannisORCID

Abstract

During the last decades, collaborative robots capable of operating out of their cages are widely used in industry to assist humans in mundane and harsh manufacturing tasks. Although such robots are inherently safe by design, they are commonly accompanied by external sensors and other cyber-physical systems, to facilitate close cooperation with humans, which frequently render the collaborative ecosystem unsafe and prone to hazards. We introduce a method that capitalizes on partially observable Markov decision processes (POMDP) to amalgamate nominal actions of the system along with unsafe control actions posed by the System Theoretic Process Analysis (STPA). A decision-making mechanism that constantly prompts the system into a safer state is realized by providing situation awareness about the safety levels of the collaborative ecosystem by associating the system safety awareness with specific groups of selected actions. POMDP compensates the partial observability and uncertainty of the current state of the collaborative environment and creates safety screening policies that tend to make decisions that balance the system from unsafe to safe states in real time during the operational phase. The theoretical framework is assessed on a simulated human–robot collaborative scenario and proved capable of identifying loss and success scenarios.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. A brief overview of the use of collaborative robots in industry 4.0: Human role and safety;Bragança,2019

2. HUMAN – ROBOT COLLABORATION IN INDUSTRY

3. Safety bounds in human robot interaction: A survey

4. Ergonomics in the Industry 4.0: Collaborative Robots

5. A model of the tacit knowledge transfer support tool: CKnow-board;Patalas-Maliszewska,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3