Safety Assessment for Upper Part of Floating Crane Considering Minimum Luffing Angle

Author:

Lee Min-Woo,Lee Ji-Hyun,Lee Yeon-Seung,Park Hyun-JinORCID,Lee Tak-KeeORCID

Abstract

Floating cranes are used for the construction and installation work of harbors, various heavy industries, and offshore structures. In the case of floating cranes that need to move around the work site, their navigation can be constrained due to marine bridges. In some cases, the clearance under the bridge between the water surface and the bottom of the marine bridge may be too low, and floating cranes cannot pass under the marine bridge. In this study, the height of the marine bridges and the boom height of the floating cranes considering the minimum luffing angle were investigated. Through minimizing the boom luffing angle of the floating crane by the height of back tower, a floating crane with improved mobility through marine bridges was developed. A structural analysis model was produced to check whether the developed crane design satisfies the design criteria obeying the KR, DNVGL, and ABS rules, including luffing condition as a special consideration. As a result of the structural analyses, structural safety was validated for the service, stowage, and luffing conditions in terms of combined stresses, displacements, and buckling.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Crane fatalities — a taxonomic analysis

2. Analysis of Crane and Lifting Accidents in North America from 2004 to 2010https://dspace.mit.edu/handle/1721.1/73792

3. Investigation of crane operation safety by analysing main accident causes;Milazzo,2017

4. Towards risk assessment for crane activities

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on prevent failure and key technologies to install jib of large floating crane;Australian Journal of Mechanical Engineering;2022-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3