A Building Segmentation Network Based on Improved Spatial Pyramid in Remote Sensing Images

Author:

Bai Hao,Bai Tingzhu,Li Wei,Liu Xun

Abstract

Building segmentation is widely used in urban planning, disaster prevention, human flow monitoring and environmental monitoring. However, due to the complex landscapes and highdensity settlements, automatically characterizing building in the urban village or cities using remote sensing images is very challenging. Inspired by the rencent deep learning methods, this paper proposed a novel end-to-end building segmentation network for segmenting buildings from remote sensing images. The network includes two branches: one branch uses Widely Adaptive Spatial Pyramid (WASP) structure to extract multi-scale features, and the other branch uses a deep residual network combined with a sub-pixel up-sampling structure to enhance the detail of building boundaries. We compared our proposed method with three state-of-the-art networks: DeepLabv3+, ENet, ESPNet. Experiments were performed using the publicly available Inria Aerial Image Labelling dataset (Inria aerial dataset) and the Satellite dataset II(East Asia). The results showed that our method outperformed the other networks in the experiments, with Pixel Accuracy reaching 0.8421 and 0.8738, respectively and with mIoU reaching 0.9034 and 0.8936 respectively. Compared with the basic network, it has increased by about 25% or more. It can not only extract building footprints, but also especially small building objects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse and Complete Latent Organization for Geospatial Semantic Segmentation;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3