Switching Control Strategy for Oscillating Water Columns Based on Response Amplitude Operators for Floating Offshore Wind Turbines Stabilization

Author:

Aboutalebi PayamORCID,M’zoughi FaresORCID,Martija ItziarORCID,Garrido IzaskunORCID,Garrido Aitor J.ORCID

Abstract

In this article, a new strategy for switching control has been proposed with the aim of reducing oscillations in floating offshore wind turbines. Such oscillations lead to a shortage in the system’s efficiency, lifespan and harvesting capability of wind and wave energies. In order to study the decreasing of undesired oscillations in the system, particularly in pitch and top tower fore-aft movements, a square-shaped platform barge equipped with four symmetric oscillating water columns has been considered. The oscillating water columns’ air flux valves allow to operate the air columns so that to control the barge movements caused by oscillatory motion of the waves. In order to design the control scheme, response amplitude operators have been used to evaluate the performance of the system for a range of wave frequency profiles. These response amplitude operators analysis makes it possible to implement a switching control strategy to adequately regulate the valves opening/closing transition. The obtained results show that the proposed controlled oscillating water column-based barge present a better performance compared to the traditional barge one. In the case study with the period of 10 s, the results indicate the significant oscillation reduction for the controlled oscillating water column-based system compared to the standard barge system by 30.8% in pitch angle and 25% in fore-aft displacement.

Funder

Eusko Jaurlaritza

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3