Experimental and Numerical Investigation of an Innovative Method for Strengthening Cold-Formed Steel Profiles in Bending throughout Finite Element Modeling and Application of Neural Network Based on Feature Selection Method

Author:

Taheri Ehsan,Esgandarzadeh Fard Saeid,Zandi YousefORCID,Samali Bijan

Abstract

This study evaluates an innovative reinforcement method for cold-formed steel (CFS) upright sections through finite element assessment as well as prediction of the normalized ultimate load and deflection of the profiles by artificial intelligence (AI) and machine learning (ML) techniques. Following the previous experimental studies, several CFS upright profiles with different lengths, thicknesses and reinforcement spacings are modeled and analyzed under flexural loading. The finite element method (FEM) is employed to evaluate the proposed reinforcement method in different upright sections and to provide a valid database for the analytical study. To detect the most influential factor on flexural strength, the “feature selection” method is performed on the FEM results. Then, by using the feature selection method, a hybrid neural network (a combination of multi-layer perceptron algorithm and particle swarm optimization method) is developed for the prediction of normalized ultimate load. The correlation coefficient (R), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE) and Wilmot’s index of agreement (WI) are used as the measure of precision. The results show that the geometrical parameters have almost the same contribution in the flexural capacity and deflection of the specimens. According to the performance evaluation indexes, the best model is detected and optimized by tuning other algorithm parameters. The results indicate that the hybrid neural network can successfully predict the normalized ultimate load and deflection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3