Development of a Fully Automated Glioma-Grading Pipeline Using Post-Contrast T1-Weighted Images Combined with Cloud-Based 3D Convolutional Neural Network

Author:

Yamashiro Hiroto,Teramoto AtsushiORCID,Saito Kuniaki,Fujita Hiroshi

Abstract

Glioma is the most common type of brain tumor, and its grade influences its treatment policy and prognosis. Therefore, artificial-intelligence-based tumor grading methods have been studied. However, in most studies, two-dimensional (2D) analysis and manual tumor-region extraction were performed. Additionally, deep learning research that uses medical images experiences difficulties in collecting image data and preparing hardware, thus hindering its widespread use. Therefore, we developed a 3D convolutional neural network (3D CNN) pipeline for realizing a fully automated glioma-grading system by using the pretrained Clara segmentation model provided by NVIDIA and our original classification model. In this method, the brain tumor region was extracted using the Clara segmentation model, and the volume of interest (VOI) created using this extracted region was assigned to a grading 3D CNN and classified as either grade II, III, or IV. Through evaluation using 46 regions, the grading accuracy of all tumors was 91.3%, which was comparable to that of the method using multi-sequence. The proposed pipeline scheme may enable the creation of a fully automated glioma-grading pipeline in a single sequence by combining the pretrained 3D CNN and our original 3D CNN.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3