Charge Carrier Transport in Van Der Waals Semiconductor InSe Intercalated with RbNO3 Probed by Direct Current Methods
-
Published:2021-06-02
Issue:11
Volume:11
Page:5181
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Kudrynskyi Zakhar R.ORCID,
Mintyanskii Illya V.,
Savitskii Petro I.,
Kovalyuk Zakhar D.
Abstract
Layered van der Waals (vdW) semiconductors show great promise to overcome limitations imposed by traditional semiconductor materials. The synergistic combination of vdW semiconductors with other functional materials can offer novel working principles and device concepts for future nano- and optoelectronics. Herein, we investigate the influence of the intercalation of semiconducting n-type InSe vdW crystals with ferroelectric rubidium nitrate (RbNO3) on the transport of charge carriers along and across the layers. The apparent maxima in the temperature dependences of the Hall coefficient are explained in the framework of a model that predicts, along with three-dimensional carriers, the existence of two-dimensional ones contributing only to the conductivity along the layers. The revealed increase of the conductivity anisotropy and its activation variation with temperature, which is mainly due to a decrease of the conductivity across the layers, confirm a two-dimensionalization of electron gas in n-InSe after insertion of the ferroelectric. From the numerical analysis, we determined the densities of carriers of both types, concentrations of donors and acceptors, as well as the value of the interlayer barrier.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献