Prediction of Sound Scattering from Deep-Sea Targets Based on Equivalence of Directional Point Sources

Author:

Liu Jinpeng,Zhu Zheng,Ji Yongqiang,Chen Ziyang,Zhang Chao,Shang Dejiang

Abstract

A fast prediction method is proposed for calculating the sound scattering of targets in the deep-sea acoustic channel by equating the sound scattering field of a complex elastic target to the acoustic field excited by a directional point source. In deep-sea conditions, the effects of the sea surface on the impedance characteristics of the elastic target surface can be ignored. Through the finite element simulation of the acoustic scattering of the target in the free field, the sound scattering field is equated to the radiation field of a directional point source. Subsequently, the point source is placed in the channel, and the acoustic ray method is used to calculate the distribution of the scattering field. On the basis of theoretical modelling, the method of obtaining the directional point source and the influence of the sea surface on the impedance of the scattering field are analysed. Subsequently, the proposed method is compared with the finite element method in terms of computational efficiency. The result shows that the method considers the multiple complex coupling effects between the elastic structure and marine environment. The influence of the boundary is approximately negligible when the distance from the ocean boundary to the elastic structure is equal to the wavelength. The method only performs finite element coupling calculation in the free field; the amount of mesh size is greatly reduced and the calculation efficiency is significantly improved when compared with the finite element calculation in the entire channel, the. The calculation time in the example can be reduced by more than one order of magnitude. This method organically combines the near-field calculation with acoustic ray theory and it can realise the rapid calculation of the large-scale acoustic scattering field in complex marine environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. Methods of Theoretical Physics

2. Sound Scattering by Elastic Cylinders

3. Theory of elastic resonance excitation by sound scattering

4. The singularity expansion method;Baum,1976

5. The Finite Element/Boundary Element Approach to the Radition and Scattering of Submerged Shells Including Internal Structure or Equipment;Miller,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3