Recovery of Zinc and Copper from Mine Tailings by Acid Leaching Solutions Combined with Carbon-Based Materials

Author:

Álvarez María Luisa,Méndez AnaORCID,Rodríguez-Pacheco Roberto,Paz-Ferreiro JorgeORCID,Gascó Gabriel

Abstract

Mine tailing storage represents an important environmental issue. The generation and dispersal of dust from mine tailings can contaminate air and surrounding soils. In addition, metals and soluble salts present in these wastes could pollute groundwater and surface water. The recovery of metals from mine tailings can contribute to minimize the environmental risk and to achieve a circular economy model. The main objective of the present work is to study the use of two carbon-based materials, a commercial activated carbon (AC) and a commercial charcoal (VC) in the leaching of zinc and copper from low-grade tailing waste. Experimental results obtained show that it is possible to achieve the recovery of more than 87 wt% of Zn after 6 h of leaching with different sulfuric acid solutions. The addition of carbon-based materials increases the extraction of Zn at high sulfuric acid concentrations (1 M) from 89% to 99%. The addition of VC significantly increases the extraction of Cu in leaching solution with high sulfuric acid concentration (1 M), from 41 to 61%. Future research will be necessary to optimize the properties of carbon-based materials and their recovery after leaching experiments in order to assess their potential for industrial application.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. A framework for a sustainable approach to mine tailings management: disposal strategies

2. Study of the MS response by TG–MS in an acid mine drainage efflorescence

3. Estudio de una Rambla Afectada por la Actividad Minera: Rambla del Beal, Cartagena (Murcia);Rodríguez;Inf. Técnicos Ciemat.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3