Development and Study of the Structure and Properties of a Composite Textile Material with Encapsulated Heat-Preserving Components for Heat-Protective Clothing

Author:

Cherunova IrinaORCID,Kornev NikolaiORCID,Lukyanova Ekaterina,Varavka Valery

Abstract

The modern technology of heat-protective clothing is increasingly aimed at maintaining the active function of materials. Adding heat-preserving components into the volume of heat-insulating fibrous materials changes their structure and properties. In this article, the methods of forming the structure of multi-component insulants with heat-preserving components, as well as the study of structural and thermophysical properties, are presented. Composite textile materials were used in this study, namely a 0/30/50/100% Outlast textile (based on polyester fleece, 70%) + Termofiber (fiber-insulated polyester material, 100%). Based on the research, we established the structural parameters of Termofiber fibrous canvas and the Outlast textile. The study of the thermal conductivity of complex combined insulation materials was performed for different temperature conditions (up to +25 °C) and for the proportion of the heat-accumulating textile components. Based on the obtained research results for the development of complex materials from Termofiber + the Outlast textile, the fraction of the Outlast textile component should be limited to no more than 40% for textile shells in clothing that are operated at a temperature of +5 °C or below. Further conditions for determining the composition of the studied materials for clothing can be settled by taking into account the density of the materials, the mass, and the general thermal insulation of clothing.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3