A Metric and Visualization of Completeness in Multi-Dimensional Data Sets of Sensor and Actuator Data Applied to a Condition Monitoring Use Case

Author:

Weiß Iris,Vogel-Heuser BirgitORCID

Abstract

The so-called ‘Industrie 4.0’ provides high potential for data-driven methods in automated production systems. However, sensor and actuator data gathered during normal operation of the system is often limited to a narrow range of single, specific operating points. This limitation also restricts the significance of condition-based maintenance models, which are trained to the narrow data. In order to reveal the structure of such multi-dimensional data sets and detect deficiencies, this paper derives a data quality metric and visualization. The metric observes the feature space and evaluates the completeness of data. In the best case, the observations utilize the whole feature space, meaning all different combinations of the variables are present in the data. Low metric values indicate missing combinations, reducing the representativeness of the data. In this way, appropriate countermeasures can be taken if relevant data is missing. For evaluation, a data set of an industrial test bed for condition monitoring of control valves is used. It is shown that the state-of-the-art metrics and visualizations cannot detect deficiencies of completeness in multi-dimensional data sets. In contrast, the proposed heat map enables the expert to locate limitations in multi-dimensional data sets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference61 articles.

1. Instandhaltung im Wandel: Neue Strategien erhöhen die Anlagenverfügbarkeithttps://www.chemietechnik.de/energie-utilities/instandhaltung-im-wandel-neue-strategien-erhoehen-die-anlagenverfuegbarkeit.html

2. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches

3. Technologieszenario, Künstliche Intelligenz in Der Industrie 4.0;Ahlborn,2019

4. Handbuch Der Qualitätsplanung;Juran,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3