Numerical Simulation of Engineering Cementitious Composite Beams Strengthened with Fiber-Reinforced Polymer and Steel Bars

Author:

Shbeeb Nadim I.12ORCID,Barham Wasim S.1,Alyahya Wala’a3

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

2. Department of Civil Engineering, Faculty of Engineering, Fahad Bin Sultan University, P.O. Box 15700, Tabuk 71454, Saudi Arabia

3. Civil Engineering Department, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

Abstract

In this paper, the flexural performance of the Engineering Cementitious Composite (ECC)-concrete composite beam hybrid reinforced by steel and Fiber Reinforced Polymer (FRP) bars is assessed using nonlinear finite element analysis. The concrete damage plasticity model is used to model the nonlinear behavior of ECC and concrete materials. A perfect bond is assumed at the interface surface between the ECC and concrete. The validity of the numerical model is established through comparison with a previously published experimental study (overall error of about 5.4%). Consequently, the developed model is utilized to consider the effect of hybrid (FRP/steel) tensile reinforcement ratio, thickness of the ECC layer, type of FRP bars, and compressive strength of concrete on the flexure performance. It was evident from the results that the ratio of hybrid (FRP/steel) tensile reinforcement should be carefully chosen to achieve an adequate balance between ductility and carrying load capacity. Additionally, the thickness of the ECC layer plays a crucial role in controlling the hybrid reinforcement’s tensile ratio to prevent rapid failure following the yielding of steel rebars within the ECC layer. Furthermore, the type of FRP bars used in the hybrid reinforcement has influenced the flexural behavior of the composite beam. Conversely, increasing the compressive strength of the concrete has minimal impact on enhancing the mechanical characteristics of the beams, even when considering a change in the type of FRP bars.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3