Author:
Kwok Fung Ming,Sun Zhanwen,Yip Wai Sze,Kwok Kwong Yu David,To Suet
Abstract
High-frequency and high-speed printed circuit boards (PCBs) are made of ceramic particles and anisotropic fibres, which are difficult to machine. In most cases, severe tool wear occurs when drilling high-frequency PCBs. To protect the substrate of the drills, diamond films are typically fabricated on the drills using hot filament chemical vapour deposition (HFCVD). This study investigates the coating characteristics of drills with respect to different HFCVD processing parameters and the coating characteristics following wear from machining high-frequency PCBs. The results show that the methane concentration, processing time and temperature all have a significant effect on the grain size and coating thickness of the diamond film. The grain size of the film obviously decreases as does the methane concentration, while the coating thickness increases. By drilling high-frequency PCBs with drills with nanocrystalline and microcrystalline grain sizes, it is discovered that drills with nanocrystalline films have a longer tool life than drills with microcrystalline films. The maximum length of the flank wear of the nanocrystalline diamond-coated drill is nearly 90% less than microcrystalline diamond-coated tools. Moreover, drills with thinner films wear at a faster rate than drills with thicker films. The findings highlight the effects of HFCVD parameters for coated drills that process high-frequency PCBs, thereby contributing to the production of high quality PCBs for industry and academia.
Funder
National Natural Science Foundation of China
Innovation and Technology Commission
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献