Affiliation:
1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Abstract
Spatiotemporal distribution of early afterslip is essential for seismic hazard evaluation and determination of fault friction properties. In this study, we used early post-seismic COSMO-SkyMed (19 February 2014–08 April 2014) and long-term Sentinel-1 (16 October 2014–17 June 2020) observations from multiple platforms over different periods to create a rate decay model driven by post-seismic afterslip. The combined observations provide full coverage of the post-seismic deformation following the 2014 Yutian Mw 6.9 earthquake that occurred at the southwestern end of the Altyn Tagh Fault. The observation and modeling results showed that post-seismic deformation was characterized by left-lateral strike-slip movement with minor normal slip, which was consistent with that of co-seismic rupture. The maximum early afterslip (7–55 days) was as large as approximately 0.09 m with a depth of 7 km in the west of co-seismic rupture, and the maximum long-term afterslip was about 0.24 m. The simulated post-seismic deformation caused by poroelastic rebound and viscoelastic relaxation suggests that the afterslip mechanism controls the post-seismic deformation. The coupling pattern of the aftershock and afterslip indicates that the aftershock was mainly caused by the afterslip. The post-seismic spatiotemporal features of the 2014 Yutian earthquake have significant implications for analyzing seismic hazards at the southwestern end of the Altyn Tagh Fault.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences