Sea Surface Moving Target Detection Using a Modified Keystone Transform on Wideband Radar Data

Author:

Chang Jiayun1,Fu Xiongjun1,Zhao Congxia1,Feng Cheng1ORCID

Affiliation:

1. The School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

The echoes collected by wideband radar systems provide abundant information on target scatterers, which is beneficial to target detection, classification, and recognition. However, as the radar range resolution increases, range cell migration (RCM) during the coherent integration (CI) period happens much easier, which may cause a degradation of target detection probability. In addition, due to the target’s orientation and structure relative to the radar, the distribution characteristics of the target scatterers in high-resolution range profiles (HRRPs) and the detection window length may vary from pulse to pulse, which may reduce the performance of traditional energy integration (EI) detectors. To solve those problems, moving range-spread target (RST) detection combining the modified keystone transform (MKT) and improved EI (IEI) is proposed in this paper. Firstly, based on waveform entropy minimization, MKT using hunter–prey optimization (HPO) is introduced to reduce the CI gain loss. The target Doppler ambiguity factor is estimated using such an effective optimization technique. Then, the IEI detector optimized by the adaptive threshold and detection window is utilized to achieve target detection, which minimizes the sensitivity of the traditional EI detector to the detection window length. The proposed method significantly improves the performance of moving RSTs in sea clutter without prior knowledge of the target Doppler ambiguity factor. Experiments are conducted by comparing the proposed method with other competing methods on both simulation data and real sea clutter data. The results demonstrate that the proposed method can obtain the CI more efficiently and has a higher detection probability.

Funder

111 Project of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3