Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests

Author:

Ye Zilin12,Long Jiangping123ORCID,Zheng Huanna13,Liu Zhaohua12ORCID,Zhang Tingchen12ORCID,Wang Qingyang4ORCID

Affiliation:

1. Research Center of Forestry Remote Sensing & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province, Changsha 410004, China

3. Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China

4. Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Abstract

Unaffected by cloud cover and solar illumination, synthetic aperture radar (SAR) images have great capability to map forest growing stem volume (GSV) in complex biophysical environments. Up to now, c-band dual-polarization Gaofen-3 (GF-3) SAR images, acquired by the first Chinese civilian satellite equipped with multi-polarized modes, are rarely applied in mapping forest GSV. To evaluate the capability of dual-polarization GF-3 SAR images in mapping forest GSV, several proposed derived features were initially extracted by mathematical operations and applied to obtain optimal feature sets by different feature sorting methods and feature selection methods. Then, the maps of GSV in an evergreen coniferous forest were inverted by various machine learning algorithms and stacking ensemble learning methods with different strategies. The results implied that backscattering coefficients and partially proposed derived features showed high sensitivity to the forest GSV, and the saturation phenomenon also obviously occurred once the forest GSV was larger than 300 m3/ha. Furthermore, the results showed that the accuracy of the mapped GSV was significantly improved using the stacking ensemble learning methods. Using various optimal feature sets and base models (MLR, KNN, SVM, and RF), the rRMSE values mainly ranged from 30% to 40%. After using the stacking ensemble learning methods, the values of rRMSE ranged from 16.71% to 20.51%. This confirmed that dual-polarization GF-3 images have great potential to map forest GSV in evergreen coniferous forests.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3