Assessment of ICESat-2’s Horizontal Accuracy Using an Iterative Matching Method Based on High-Accuracy Terrains

Author:

Gao Ming1,Xing Shuai1,Zhang Guoping123,Zhang Xinlei4ORCID,Li Pengcheng1

Affiliation:

1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China

2. Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains, Zhengzhou 450001, China

3. Key Laboratory of Spatiotemporal Perception and Intelligent Processing, Ministry of Natural Resources, Zhengzhou 450001, China

4. Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China

Abstract

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), launched in September 2018, has been widely used in forestry and surveying. A high-accuracy digital elevation model (DEM)/digital surface model (DSM) for terrain matching can effectively evaluate the ICESat-2 design requirements and provide essential data support for further study. The conventional terrain-matching methods regard the laser ground track as a whole, ignoring the individual differences caused by the interaction of photons during flight. Therefore, a novel terrain-matching method using a two-dimensional affine transformation model was proposed to describe the deformation of laser tracks. The least-square optimizes the model parameters with the high-accuracy terrain data to obtain the best matching result. The results in McMurdo Dry Valley (MDV), Antarctica, and Zhengzhou (ZZ), China, demonstrate that the proposed method can verify geolocation accuracy and indicate that the average horizontal accuracy of ICESat-2 V5 data is about 3.86 m in MDV and 4.67 m in ZZ. It shows that ICESat-2 has good positioning accuracy, even in mountainous areas with complex terrain. Additionally, the random forest (RF) model was calculated to analyze the influence of four factors on geographic location accuracy. The slope and signal-to-noise ratio (SNR) are considered the crucial factors affecting the accuracy of ICESat-2 data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3