Lidar Pose Tracking of a Tumbling Spacecraft Using the Smoothed Normal Distribution Transform

Author:

Renaut Léo12ORCID,Frei Heike1ORCID,Nüchter Andreas2ORCID

Affiliation:

1. German Aerospace Center (DLR), 82234 Wessling, Germany

2. Informatics XVII-Robotics, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany

Abstract

Lidar sensors enable precise pose estimation of an uncooperative spacecraft in close range. In this context, the iterative closest point (ICP) is usually employed as a tracking method. However, when the size of the point clouds increases, the required computation time of the ICP can become a limiting factor. The normal distribution transform (NDT) is an alternative algorithm which can be more efficient than the ICP, but suffers from robustness issues. In addition, lidar sensors are also subject to motion blur effects when tracking a spacecraft tumbling with a high angular velocity, leading to a loss of precision in the relative pose estimation. This work introduces a smoothed formulation of the NDT to improve the algorithm’s robustness while maintaining its efficiency. Additionally, two strategies are investigated to mitigate the effects of motion blur. The first consists in un-distorting the point cloud, while the second is a continuous-time formulation of the NDT. Hardware-in-the-loop tests at the European Proximity Operations Simulator demonstrate the capability of the proposed methods to precisely track an uncooperative spacecraft under realistic conditions within tens of milliseconds, even when the spacecraft tumbles with a significant angular rate.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3