Resistive Switching of GaAs Oxide Nanostructures

Author:

Avilov Vadim,Polupanov Nikita,Tominov Roman,Solodovnik MaximORCID,Konoplev Boris,Smirnov VladimirORCID,Ageev OlegORCID

Abstract

The paper presents the results of experimental studies of the influence of the local anodic oxidation control parameters on the geometric parameters of oxide nanoscale structures (ONS) and profiled nanoscale structures (PNS) on the surface of epitaxial structures of silicon doped gallium arsenide with an impurity concentration of 5 × 1017 cm−3. X-ray photoelectron spectroscopy measurements showed that GaAs oxide consists of oxide phases Ga2O3 and As2O3, and the thickness of the Ga2O3 layer is 2–3 times greater than the thickness of As2O3 area—i.e., the oxidized GaAs region consists mainly of Ga2O3. The experimental studies of the influence of ONS thickness on the resistive switching effect were obtained. An increase in the ONS thickness from 0.8 ± 0.3 to 7.6 ± 0.6 nm leads to an increase in the switching voltage Uset from 2.8 ± 0.3 to 6.8 ± 0.9 V. The results can be used in the development of technological processes for the manufacturing of nano-electronic elements, such as ReRAM, as well as a high-efficiency quantum dot laser.

Funder

Russian Foundation for Basic Research

Grant of the President of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

Reference45 articles.

1. Nanotechnology for electronics & photonics;Yeh;Technovation,2013

2. Real life applications of nanotechnology in electronics;Rae;Board Technol.,2006

3. Potential opportunities for nanotechnology in electronics manufacturing;Doering;Solid State Technol.,2011

4. Nanoscale Memristor Device as Synapse in Neuromorphic Systems

5. Nonvolatile Memory with Multilevel Switching: A Basic Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3