Abstract
This paper aims to investigate the effect of fine recycled concrete powder (FRCP) on the strength of self-compacting concrete (SCC). For this purpose, a numerical artificial neural network (ANN) model was developed for strength prediction of SCC incorporating FRCP. At first, 240 experimental data sets were selected from the literature to develop the model. Approximately 60% of the database was used for training, 20% for testing, and the remaining 20% for the validation step. Model inputs included binder content, water/binder ratio, recycled concrete aggregates’ (RCA) content, percentage of supplementary cementitious materials (fly ash), amount of FRCP, and curing time. The model provided reliable results with mean square error (MSE) and regression values of 0.01 and 0.97, respectively. Additionally, to further validate the model, four experimental recycled self-compacting concrete (RSCC) samples were tested experimentally, and their properties were used as unseen data to the model. The results showed that the developed model can predict the compressive strength of RSCC with high accuracy.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献