Abstract
In this paper, we develop an unsupervised generative clustering framework that combines the variational information bottleneck and the Gaussian mixture model. Specifically, in our approach, we use the variational information bottleneck method and model the latent space as a mixture of Gaussians. We derive a bound on the cost function of our model that generalizes the Evidence Lower Bound (ELBO) and provide a variational inference type algorithm that allows computing it. In the algorithm, the coders’ mappings are parametrized using neural networks, and the bound is approximated by Markov sampling and optimized with stochastic gradient descent. Numerical results on real datasets are provided to support the efficiency of our method.
Subject
General Physics and Astronomy
Reference33 articles.
1. Algorithm AS 136: A K-Means Clustering Algorithm
2. Maximum likelihood from incomplete data via the EM algorithm;Dempster;J. R. Stat. Soc.,1977
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献