Distributed Balanced Partitioning via Linear Embedding †

Author:

Aydin Kevin,Bateni MohammadHossein,Mirrokni Vahab

Abstract

Balanced partitioning is often a crucial first step in solving large-scale graph optimization problems, for example, in some cases, a big graph can be chopped into pieces that fit on one machine to be processed independently before stitching the results together, leading to certain suboptimality from the interaction among different pieces. In other cases, links between different parts may show up in the running time and/or network communications cost, hence the desire to have small cut size. We study a distributed balanced-partitioning problem where the goal is to partition the vertices of a given graph into k pieces so as to minimize the total cut size. Our algorithm is composed of a few steps that are easily implementable in distributed computation frameworks such as MapReduce. The algorithm first embeds nodes of the graph onto a line, and then processes nodes in a distributed manner guided by the linear embedding order. We examine various ways to find the first embedding, for example, via a hierarchical clustering or Hilbert curves. Then we apply four different techniques including local swaps, and minimum cuts on the boundaries of partitions, as well as contraction and dynamic programming. As our empirical study, we compare the above techniques with each other, and also to previous work in distributed graph algorithms, for example, a label-propagation method, FENNEL and Spinner. We report our results both on a private map graph and several public social networks, and show that our results beat previous distributed algorithms: For instance, compared to the label-propagation algorithm, we report an improvement of 15–25% in the cut value. We also observe that our algorithms admit scalable distributed implementation for any number of partitions. Finally, we explain three applications of this work at Google: (1) Balanced partitioning is used to route multi-term queries to different replicas in Google Search backend in a way that reduces the cache miss rates by ≈ 0.5 % , which leads to a double-digit gain in throughput of production clusters. (2) Applied to the Google Maps Driving Directions, balanced partitioning minimizes the number of cross-shard queries with the goal of saving in CPU usage. This system achieves load balancing by dividing the world graph into several “shards”. Live experiments demonstrate an ≈ 40 % drop in the number of cross-shard queries when compared to a standard geography-based method. (3) In a job scheduling problem for our data centers, we use balanced partitioning to evenly distribute the work while minimizing the amount of communication across geographically distant servers. In fact, the hierarchical nature of our solution goes well with the layering of data center servers, where certain machines are closer to each other and have faster links to one another.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference48 articles.

1. The Sourcebook of Parallel Computing;Dongarra,2003

2. Balanced Graph Partitioning

3. Computers and Intractability: A Guide to the Theory of NP-Completeness;Garey,1979

4. FENNEL

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emulating High-performance Networks with CNNet;2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW);2023-07-18

2. Attributed multi-query community search via random walk similarity;Information Sciences;2023-06

3. More Recent Advances in (Hyper)Graph Partitioning;ACM Computing Surveys;2023-03-02

4. Deconvolution of spherical data corrupted with unknown noise;Electronic Journal of Statistics;2023-01-01

5. Design and analysis of bipartite experiments under a linear exposure-response model;Electronic Journal of Statistics;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3