A Stand-Alone Smart Camera System for Online Post-Earthquake Building Safety Assessment

Author:

Hsu Ting-YuORCID,Kuo Xiang-Ju

Abstract

Computer vision-based approaches are very useful for dynamic displacement measurement, damage detection, and structural health monitoring. However, for the application using a large number of existing cameras in buildings, the computational cost of videos from dozens of cameras using a centralized computer becomes a huge burden. Moreover, when a manual process is required for processing the videos, prompt safety assessment of tens of thousands of buildings after a catastrophic earthquake striking a megacity becomes very challenging. Therefore, a decentralized and fully automatic computer vision-based approach for prompt building safety assessment and decision-making is desired for practical applications. In this study, a prototype of a novel stand-alone smart camera system for measuring interstory drifts was developed. The proposed system is composed of a single camera, a single-board computer, and two accelerometers with a microcontroller unit. The system is capable of compensating for rotational effects of the camera during earthquake excitations. Furthermore, by fusing the camera-based interstory drifts with the accelerometer-based ones, the interstory drifts can be measured accurately even when residual interstory drifts exist. Algorithms used to compensate for the camera’s rotational effects, algorithms used to track the movement of three targets within three regions of interest, artificial neural networks used to convert the interstory drifts to engineering units, and some necessary signal processing algorithms, including interpolation, cross-correlation, and filtering algorithms, were embedded in the smart camera system. As a result, online processing of the video data and acceleration data using decentralized computational resources is achieved in each individual smart camera system to obtain interstory drifts. Using the maximum interstory drifts measured during an earthquake, the safety of a building can be assessed right after the earthquake excitation. We validated the feasibility of the prototype of the proposed smart camera system through the use of large-scale shaking table tests of a steel building. The results show that the proposed smart camera system had very promising results in terms of assessing the safety of steel building specimens after earthquake excitations.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Automated post-earthquake damage assessment of instrumented buildings;Naeim,2006

2. HAZUS-MH2.1 Technical Manual,2013

3. Displacement Estimation Using Multimetric Data Fusion

4. Visual-inertial displacement sensing using data fusion of vision-based displacement with acceleration

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3