Abstract
We propose a deep-learning algorithm that directly compensates for luminance degradation because of the deterioration of organic light-emitting diode (OLED) devices to address the burn-in phenomenon of OLED displays. Conventional compensation circuits are encumbered by high cost of the development and manufacturing processes because of their complexity. However, given that deep-learning algorithms are typically mounted onto systems on chip (SoC), the complexity of the circuit design is reduced, and the circuit can be reused by only relearning the changed characteristics of the new pixel device. The proposed approach comprises deep-feature generation and multistream self-attention, which decipher the importance of the variables, and the correlation between burn-in-related variables. It also utilizes a deep neural network that identifies the nonlinear relationship between extracted features and luminance degradation. Thereafter, luminance degradation is estimated from burn-in-related variables, and the burn-in phenomenon can be addressed by compensating for luminance degradation. Experiment results revealed that compensation was successfully achieved within an error range of 4.56%, and demonstrated the potential of a new approach that could mitigate the burn-in phenomenon by directly compensating for pixel-level luminance deviation.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献