Life-Cycle Assessment of Bio-Jet Fuel Production from Waste Cooking Oil via Hydroconversion

Author:

Zhang ZongweiORCID,Wei Keheng,Li Junqi,Wang Zihan

Abstract

A life-cycle assessment of bio-jet fuel from waste cooking oil (WCO) produced by hydrotreatment was performed and compared with petroleum-derived jet fuel. This study aimed to evaluate the sustainability and find out the bottleneck restricting the development of WCO-based jet fuel production. The carbon intensity of the WCO-based bio-jet fuel was 63.7% lower compared to the conventional jet fuel, and the proportion of greenhouse gas (GHG) emissions caused by hydrogen in the WCO was 18.7%. The feedstock stage proportion of GHG emissions of first-, second-, and third-generation biofuels increased. A sensitivity analysis found that the transportation distance of WCO was more sensitive to GHG emissions, and it is important to develop a detailed plan for feedstock collection. A scenario analysis was also performed according to China’s energy structure and hydrogen sources. Although the electric power structure derived from renewable energy will increase GHG emissions in the immediate future, it will eventually reduce emissions due to technical progress by 2050. The preparation of jet fuel from WCO can not only recycle waste but can also contribute to emission reduction for the aviation industry, which is a potential sustainable and feasible aviation fuel route.

Funder

the Scientific research project of Tianjin Education Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drop-in Biofuel Production: An Environmental Assessment Perspective;Biofuel and Biorefinery Technologies;2024

2. The Promise and Reality of Sustainable Fuels;Advanced Materials for Multidisciplinary Applications;2023-11-21

3. Composite Liquid Biofuels for Power Plants and Engines: Review;Energies;2023-08-11

4. Life Cycle Assessment and its Application to the Aviation Sector;Acta Montanistica Slovaca;2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3