Investigation of the Flow Intensity in an Inverted Seven-Point Well Pattern and Its Influence on the EOR Efficiency of S/P Flooding

Author:

Que Tingli,Chen Xin,Guan Dan,Yun Qingqing,Luan Huoxin,Tang XuechenORCID,Cao Jinxin,Liu ZheyuORCID,Nie Xiaobin

Abstract

Polymer and surfactant (S/P) binary flooding is a widely used chemical flooding technology for enhanced oil recovery (EOR). However, it is mostly used in the five-spot well pattern, and there is little research on the effect of well patterns on its flow law and EOR efficiency in the reservoir. In this paper, the flow intensity of S/P flooding in an inverted seven-spot well unit and its EOR efficiency are investigated. Based on the theoretical derivation and simulation, the flow distribution at different positions in the inverted seven-spot well pattern unit was calculated. The oil displacement efficiency was evaluated by simulating different flow intensities with various flow velocity. The microscopic residual oil of the core at the end of displacement was scanned and recognized. The 2D model was used to simulate the well pattern to clarify the EOR of S/P flooding. The results show that the swept area in the well unit can be divided into the strong swept region (>0.2 MPa); medium swept region (0.1–0.2 MPa); weak swept region (0.03–0.1 MPa); and invalid swept region (<0.03 MPa), according to the pressure gradient distribution. Compared to the five-spot well pattern, the inverted seven-spot well pattern featured a weak swept intensity, but a large swept area and lower water cut rise rate. Increasing the flow intensity can improve oil displacement efficiency, and disperse and displace continuous cluster remaining oil. The 2D model experiments show that the incremental oil recoveries by SP flooding after water flooding in the five-spot well pattern and inverted seven-spot well pattern are 25.73% and 17.05%, respectively. However, the ultimate oil recoveries of two well patterns are similar by considering the previous water flooding.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3