Abstract
This paper proposes an effective approach to solve renewable distributed generators (RDGs) and electric vehicle charging station (EVCS) allocation problems in the distribution system (DS) to reduce power loss (PLoss) and enhance voltage profile. The RDGs considered for this work are solar, wind and fuel cell. The uncertainties related to RDGs are modelled using probability distribution functions (PDF). These sources’ best locations and sizes are identified by the voltage stability index (VSI) and political optimization algorithm (POA). Furthermore, EV charging strategies such as the conventional charging method (CCM) and optimized charging method (OCM) are considered to study the method’s efficacy. The developed approach is studied on Indian 28 bus DS. Different cases are considered, such as a single DG, multiple DGs and a combination of DGs and EVs. This placement of multiple DGs along with EVs, considering proper scheduling patterns, minimizes PLoss and considerably improves the voltage profile. Finally, the proposed method is compared with other algorithms, and simulated results show that the POA method produces better results in all aspects.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献