Distributed Optimization of District Heating Networks Using Optimality Condition Decomposition

Author:

Maurer JonaORCID,Illerhaus JochenORCID,Soneira Pol JanéORCID,Hohmann Sören

Abstract

The optimal operation of District Heating Networks (DHNs) is a challenging task. Current or future optimal dispatch energy management systems attempt to optimize objectives, such as monetary cost minimization, emission reduction, or social welfare maximization. Typically, this requires highly nonlinear models and has a substantial computational cost, especially for large DHNs. Consequently, it is difficult to solve the resulting nonlinear programming problem in real time. In particular, as typical applications allow for no more than several minutes of computation time. However, a distributed optimization approach may provide real time performance. Thereby, the solution of the central optimization problem is obtained by solving a set of small-scale, coupled optimization problems in parallel. At runtime, information is exchanged between the small-scale problems during the iterative solution procedure. A well-known approach of this class of distributed optimization algorithms is Optimality Condition Decomposition (OCD). Important advantages of this approach are the low amount of information exchange needed between the small-scale problems and that it does not require the tuning of parameters, which can be challenging. However, the DHNs model equation structure brings along many difficulties that hamper the application of the OCD approach. Simulation results demonstrate the applicability range of the presented method.

Funder

Germany’s Federal Ministry 357 for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3