Optimization of Proton Exchange Membrane Electrolyzer Cell Design Using Machine Learning

Author:

Mohamed AmiraORCID,Ibrahem HatemORCID,Yang Rui,Kim KibumORCID

Abstract

We propose efficient multiple machine learning (ML) models using specifically polynomial and logistic regression ML methods to predict the optimal design of proton exchange membrane (PEM) electrolyzer cells. The models predict eleven different parameters of the cell components for four different input parameters such as hydrogen production rate, cathode area, anode area, and the type of cell design (e.g., single or bipolar). The models fit well as we trained multiple machine learning models on 148 samples and validated the model performance on a test set of 16 samples. The average accuracy of the classification model and the mean absolute error is 83.6% and 6.825, respectively, which indicates that the proposed technique performs very well. We also measured the hydrogen production rate using a custom-made PEM electrolyzer cell fabricated based on the predicted parameters and compared it to the simulation result. Both results are in excellent agreement and within a negligible experimental uncertainty (i.e., a mean absolute error of 0.615). Finally, optimal PEM electrolyzer cells for commercial-scaled hydrogen production rates ranging from 500 to 5000 mL/min were designed using the machine learning models. To the best of our knowledge, we are the first group to model the PEM design problem with such large parameter predictions using machine learning with those specific input parameters. This study opens the route for providing a form of technology that can greatly save the cost and time required to develop water electrolyzer cells for future hydrogen production.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3