Abstract
This paper presents a passivity-based control (PBC) based on the Euler–Lagrange (EL) model for dual active bridge (DAB) converters in the constant power load (CPL) condition. The EL model, which is derived from Kirchhoff’s current equations at the input and output nodes, is first presented in the DAB application, and the bidirectional CPL is considered in the theoretical analysis, simulation, and physical verification. The PBC has strong robustness to large-signal disturbance and negative incremental resistance load, and it is suitable for DAB converters in the CPL condition. In this paper, the DAB’s EL model, passivity analysis, stability analysis, and controller design are described in detail. The simulation results based on SIMULINK are also given in this paper. Finally, a DAB converter prototype is built to demonstrate the validity and feasibility of the proposed approach.
Funder
Beijing Natural Science Foundation Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献