Essence of Thermal Analysis to Assess Biodiesel Combustion Performance

Author:

Atgur VinayORCID,Manavendra G.,Banapurmath Nagaraj R.ORCID,Rao Boggarapu Nageswar,Rajhi Ali A.ORCID,Khan T. M. YunusORCID,Vadlamudi Chandramouli,Krishnappa Sanjay,Sajjan Ashok M.ORCID,Venkatesh R.

Abstract

The combustion phenomena are always complex in nature due to the involvement of complex series and parallel reactions. There are various methods that are involved in analyzing combustion phenomena. Viscosity is the first and foremost factor that acts as the DNA of fuel. By evaluating the viscosity, it is possible initially to understand the combustion phenomena. Thermophysical and transport properties are helpful during the intensification of the combustion process. Combustion experiments are economically infeasible and time-consuming processes. Combustion simulations demand excellent computational facilities with detailed knowledge of chemical kinetics. So far, the majority of researchers have focused on analyzing coal combustion phenomena, whereas less work has been carried out on liquid fuels, especially biodiesel combustion analysis. Traditional engine testing provides only performance parameters, and it fails to have oversight of the thermodynamic aspects. The application of thermal analysis methods in combustion research is useful in the design, modeling, and operation of the systems. Such investigations are carried out extensively in the combustor, engine, and process industries. The use of differential scanning calorimetry (DSC) and thermogravimetry (TG) to assess the properties of biofuels has been attracting researchers in recent years. The main objective of this paper is to discuss the application of TGA and DSC to analyze heat flow, enthalpy, thermal stability, and combustion indexes. Moreover, this paper reviews some of the other aspects of the kinetics of combustion, transport properties’ evaluation, and combustion simulations for biodiesels and their blends. TG curves indicate two phases of decomposition for diesel and three phases for biofuel. The B-20 blend’s (20% biodiesel and 80% diesel) performance was found to be similar to that of diesel with the combustion index and intensity of combustion nearly comparable with diesel. It is thermally more stable with a high offset temperature, confirming a longer combustion duration. A case study reported in this work showed diesel and B20 JOME degradation start from 40 °C, whereas jatropha oil methyl ester (JOME) degradation starts from 140 °C. JOME presents more decomposition steps with high decomposition temperatures, indicative of more stable compound formation due to the oxidation process. The peak temperature of combustion for diesel, JOME, and B20 JOME are 250.4 °C, 292.1 °C, and 266.5 °C, respectively. The ignition index for the B-20 blend is 73.73% more than that of diesel. The combustion index for the B20 blend is 37.81% higher than diesel. The B20 blend exhibits high enthalpy, better thermal stability, and a reduced peak temperature of combustion with an improved combustion index and intensity of combustion nearly comparable to diesel.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3