Learning Adaptive Spatial Regularization and Temporal-Aware Correlation Filters for Visual Object Tracking

Author:

Liu LiqiangORCID,Feng TiantianORCID,Fu Yanfang,Shen Chao,Hu Zhijuan,Qin Maoyuan,Bai Xiaojun,Zhao Shifeng

Abstract

Recently, discriminative correlation filters (DCF) based trackers have gained much attention and obtained remarkable achievements for their high efficiency and outstanding performance. However, undesirable boundary effects occur when the DCF-based trackers suffer from challenging situations, such as occlusion, background clutters, fast motion, and so on. To address these problems, this work proposes a novel adaptive spatial regularization and temporal-aware correlation filters (ASTCF) model to deal with the boundary effects which occur in the correlation filters tracking. Firstly, our ASTCF model learns a more robust correlation filter template by introducing spatial regularization and temporal-aware components into the objective function. The adaptive spatial regularization provides a more robust appearance model to handle the large appearance changes at different times; meanwhile, the temporal-aware constraint can enhance the time continuity and consistency of this model. They make correlation filters model more discriminating, and also reduce the influence of the boundary effects during the tracking process. Secondly, the objective function can be transformed into three sub-problems with closed-form solutions and effectively solved via the alternating direction method of multipliers (ADMM). Finally, we compare our tracker with some representative methods and evaluate using three different benchmarks, including OTB2015, VOT2018 and LaSOT datasets, where the experimental results demonstrate the superiority of our tracker on most of the performance criteria compared with the existing trackers.

Funder

Shaanxi S&T Grants

Shaanxi Province Technology Innovation Guidance Special Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3