Modelling, Optimization, and Experimental Studies of Refrigeration CO2 Ejectors: A Review

Author:

Zheng Lixing,Zhang Yiyan,Hao Lifen,Lian HaojieORCID,Deng Jianqiang,Lu Wei

Abstract

CO2 is regarded as an effective and environmentally friendly refrigerant. Using a CO2 ejector is a proven method for enhancing the effectiveness of a transcritical CO2 refrigerant system. However, the complex internal flow of a CO2 ejector, involving supersonic effects, phase change effects, metastable effects, and so on, makes it difficult to understand. In order to summarize the current state of the technology and knowledge gaps, this work provides a comprehensive literature review on CO2 ejectors. In the first part, mathematical modelling and simulation calculations of CO2 ejectors are presented, and an overview and classification of ejector models are given. In the second part, the structural optimization part of the ejector is described in detail, and the nozzle structure, the mixing chamber length, improvements to multi-jet systems, and the impact of these factors on the system performance are analyzed. In the third part, flow visualization is used to study the complex flow phenomenon, and the effect of the shock wave on the entrained rate of the ejector is discussed. Finally, the paper outlines the relationship between all ejector technologies, working fluids, and ejector performance and makes valid recommendations for further research and development of CO2 ejectors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3