Rectifying Ill-Formed Interlingual Space: A Framework for Zero-Shot Translation on Modularized Multilingual NMT

Author:

Liao JunweiORCID,Shi Yu

Abstract

The multilingual neural machine translation (NMT) model can handle translation between more than one language pair. From the perspective of industrial applications, the modularized multilingual NMT model (M2 model) that only shares modules between the same languages is a practical alternative to the model that shares one encoder and one decoder (1-1 model). Previous works have proven that the M2 model can benefit from multiway training without suffering from capacity bottlenecks and exhibits better performance than the 1-1 model. However, the M2 model trained on English-centric data is incapable of zero-shot translation due to the ill-formed interlingual space. In this study, we propose a framework to help the M2 model form an interlingual space for zero-shot translation. Using this framework, we devise an approach that combines multiway training with a denoising autoencoder task and incorporates a Transformer attention bridge module based on the attention mechanism. We experimentally show that the proposed method can form an improved interlingual space in two zero-shot experiments. Our findings further extend the use of the M2 model for multilingual translation in industrial applications.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference56 articles.

1. Firat, O., Cho, K., and Bengio, Y. Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016.

2. Massively Multilingual Neural Machine Translation;Aharoni;Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,2019

3. Ha, T., Niehues, J., and Waibel, A.H. Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder. arXiv, 2016.

4. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation;Johnson;Trans. Assoc. Comput. Linguist.,2017

5. Arivazhagan, N., Bapna, A., Firat, O., Lepikhin, D., Johnson, M., Krikun, M., Chen, M.X., Cao, Y., Foster, G.F., Cherry, C., Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. arXiv, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3