Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity

Author:

Elaiw Ahmed M.ORCID,Alsulami Raghad S.,Hobiny Aatef D.ORCID

Abstract

Studies have reported several cases with respiratory viruses coinfection in hospitalized patients. Influenza A virus (IAV) mimics the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) with respect to seasonal occurrence, transmission routes, clinical manifestations and related immune responses. The present paper aimed to develop and investigate a mathematical model to study the dynamics of IAV/SARS-CoV-2 coinfection within the host. The influence of SARS-CoV-2-specific and IAV-specific antibody immunities is incorporated. The model simulates the interaction between seven compartments, uninfected epithelial cells, SARS-CoV-2-infected cells, IAV-infected cells, free SARS-CoV-2 particles, free IAV particles, SARS-CoV-2-specific antibodies and IAV-specific antibodies. The regrowth and death of the uninfected epithelial cells are considered. We study the basic qualitative properties of the model, calculate all equilibria and investigate the global stability of all equilibria. The global stability of equilibria is established using the Lyapunov method. We perform numerical simulations and demonstrate that they are in good agreement with the theoretical results. The importance of including the antibody immunity into the coinfection dynamics model is discussed. We have found that without modeling the antibody immunity, the case of IAV and SARS-CoV-2 coexistence is not observed. Finally, we discuss the influence of IAV infection on the dynamics of SARS-CoV-2 single-infection and vice versa.

Funder

Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference66 articles.

1. Influenza and COVID-19 coinfection: Report of six cases and review of the literature;J. Med. Virol.,2020

2. (2022, August 21). Coronavirus Disease (COVID-19), Weekly Epidemiological Update, World Health Organization (WHO). Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---24-august-2022.

3. (2022, October 02). Coronavirus Disease (COVID-19), Vaccine Tracker, World Health Organization (WHO). Available online: https://covid19.trackvaccines.org/agency/who/.

4. COVID-19 in a human T-cell lymphotropic virus type-1 carrier;Clin. Case Rep.,2022

5. Effects of aging on influenza virus infection dynamics;J. Virol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3