Reconstructing the Semiconductor Band Structure by Deep Learning

Author:

Yang Shidong,Liu Xiwang,Lin Jinyan,Zuo Ruixin,Song Xiaohong,Ciappina MarceloORCID,Yang Weifeng

Abstract

High-order harmonic generation (HHG), the nonlinear upconversion of coherent radiation resulting from the interaction of a strong and short laser pulse with atoms, molecules and solids, represents one of the most prominent examples of laser–matter interaction. In solid HHG, the characteristics of the generated coherent radiation are dominated by the band structure of the material, which configures one of the key properties of semiconductors and dielectrics. Here, we combine an all-optical method and deep learning to reconstruct the band structure of semiconductors. Our method builds up an artificial neural network based on the sensitivity of the HHG spectrum to the carrier-envelope phase (CEP) of a few-cycle pulse. We analyze the accuracy of the band structure reconstruction depending on the predicted parameters and propose a prelearning method to solve the problem of the low accuracy of some parameters. Once the network is trained with the mapping between the CEP-dependent HHG and the band structure, we can directly predict it from experimental HHG spectra. Our scheme provides an innovative way to study the structural properties of new materials.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Sino-German Mobility Programme

Guangdong Province Science and Technology Major Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference59 articles.

1. Angle-resolved photoemission studies of the cuprate superconductors;Rev. Mod. Phys.,2003

2. Band structure of a two-dimensional Dirac semimetal from cyclotron resonance;Phys. Rev. B,2017

3. Ab initio molecular dynamics for liquid metals;Phys. Rev. B,1993

4. Ab initio molecular-dynamics simulation of the liquid-metal–Amorphous-semiconductor transition in germanium;Phys. Rev. B,1993

5. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set;Comput. Mater. Sci.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3