Solving a Class of High-Order Elliptic PDEs Using Deep Neural Networks Based on Its Coupled Scheme

Author:

Li Xi’anORCID,Wu JinranORCID,Zhang Lei,Tai Xin

Abstract

Deep learning—in particular, deep neural networks (DNNs)—as a mesh-free and self-adapting method has demonstrated its great potential in the field of scientific computation. In this work, inspired by the Deep Ritz method proposed by Weinan E et al. to solve a class of variational problems that generally stem from partial differential equations, we present a coupled deep neural network (CDNN) to solve the fourth-order biharmonic equation by splitting it into two well-posed Poisson’s problems, and then design a hybrid loss function for this method that can make efficiently the optimization of DNN easier and reduce the computer resources. In addition, a new activation function based on Fourier theory is introduced for our CDNN method. This activation function can reduce significantly the approximation error of the DNN. Finally, some numerical experiments are carried out to demonstrate the feasibility and efficiency of the CDNN method for the biharmonic equation in various cases.

Funder

National Natural Science Foundation of China(NSFC) OF FUNDER

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3