Abstract
This work is devoted to presenting a new four-step iterative scheme for approximating fixed points under almost contraction mappings and Reich–Suzuki-type nonexpansive mappings (RSTN mappings, for short). Additionally, we demonstrate that for almost contraction mappings, the proposed algorithm converges faster than a variety of other current iterative schemes. Furthermore, the new iterative scheme’s ω2—stability result is established and a corroborating example is given to clarify the concept of ω2—stability. Moreover, weak as well as a number of strong convergence results are demonstrated for our new iterative approach for fixed points of RSTN mappings. Further, to demonstrate the effectiveness of our new iterative strategy, we also conduct a numerical experiment. Our major finding is applied to demonstrate that the two-dimensional (2D) Volterra integral equation has a solution. Additionally, a comprehensive example for validating the outcome of our application is provided. Our results expand and generalize a number of relevant results in the literature.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献