A Preserving Precision Mixed Finite Element Dimensionality Reduction Method for Unsaturated Flow Problem

Author:

Luo ZhendongORCID,Li Yuejie

Abstract

The unsaturated flow problem is of important applied background and its mixed finite element (MFE) method can be used to simultaneously calculate both water content and flux in soil, which is the most ideal calculation method. Nonetheless, it includes many unknowns. Thereby, herein we will employ the proper orthogonal decomposition (POD) to lower the dimension of unknown solution coefficient vectors in the MFE method for the unsaturated flow problem. Thus, we first examine the MFE method for the unsaturated flow problem and the existence and convergence of the classical MFE solutions. We then take advantage of the initial L MFE solution coefficient vectors to generate a set of POD basis vectors and utilize the most POD basis vectors to create the preserving precision MFE reduced-dimension (PPMFERD) format. Under the circumstances, the PPMFERD format has the same basis functions as the classical MFE format so that it can maintain the same accuracy as the classical MFE format, but it only includes a few unknowns, so it greatly lightens the calculating load, retards the accumulation of computing errors, saves CPU runtime, and improves the accuracy of the real-time calculation in the computational process. Next, we employ the analysis of matrices to demonstrate the existence and convergence of the PPMFERD solutions such that the theoretical analysis becomes very simple and elegant. Finally, we take advantage of some numerical simulations to check on the correctness of the PPMFERD method. It shows that the PPMFERD method is effective and feasible for simulating both water content and flux in unsaturated flow soil.

Funder

Ordos Science and Technology Plan Project

Inner Mongolia Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3