Synergistic Antimicrobial Activity of Magnetite and Vancomycin-Loaded Mesoporous Silica Embedded in Alginate Films

Author:

Dolete Georgiana12ORCID,Ilie Cornelia-Ioana12ORCID,Chircov Cristina12ORCID,Purcăreanu Bogdan13ORCID,Motelica Ludmila12ORCID,Moroșan Alina4,Oprea Ovidiu Cristian256ORCID,Ficai Denisa126ORCID,Andronescu Ecaterina126ORCID,Dițu Lia-Mara78ORCID

Affiliation:

1. Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania

2. National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania

3. BIOTEHNOS SA, Gorunului Street 3-5, 075100 Otopeni, Romania

4. Department of Organic Chemistry “Costin Nenițescu”, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania

5. Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania

6. Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania

7. Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania

8. Research Institute of the University of Bucharest, 91-95 Splaiul Independenței, 050095 Bucharest, Romania

Abstract

The aim of the present study was to obtain a hydrogel-based film as a carrier for the sustained and controlled release of vancomycin, an antibiotic commonly used in various types of infections. Considering the high-water solubility of vancomycin (>50 mg/mL) and the aqueous medium underlying the exudates, a prolonged release of vancomycin from an MCM-41 carrier was sought. The present work focused on the synthesis of malic acid coated magnetite (Fe3O4/malic) by co-precipitation, synthesis of MCM-41 by a sol-gel method and loading of MCM-41 with vancomycin, and their use in alginate films for wound dressing. The nanoparticles obtained were physically mixed and embedded in the alginate gel. Prior to incorporation, the nanoparticles were characterized by XRD, FT-IR and FT-Raman spectroscopy, TGA-DSC and DLS. The films were prepared by a simple casting method and were further cross-linked and examined for possible heterogeneities by means of FT-IR microscopy and SEM. The degree of swelling and the water vapor transmission rate were determined, considering their potential use as wound dressings. The obtained films show morpho-structural homogeneity, sustained release over 48 h and a strong synergistic enhancement of the antimicrobial activity as a consequence of the hybrid nature of these films. The antimicrobial efficacy was tested against S. aureus, two strains of E. faecalis (including vancomycin-resistant Enterococcus, VRE) and C. albicans. The incorporation of magnetite was also considered as an external triggering component in case the films were used as a magneto-responsive smart dressing to stimulate vancomycin diffusion.

Funder

Sisteme inteligente cu eliberare controlata pentru tratarea cancerului utilizand o abordare personalizata

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3