Synthesis and Characterization of Biodegradable Poly(vinyl alcohol)-Chitosan/Cellulose Hydrogel Beads for Efficient Removal of Pb(II), Cd(II), Zn(II), and Co(II) from Water

Author:

Aljar Mona A. Aziz1ORCID,Rashdan Suad1,Almutawah Abdulla1ORCID,El-Fattah Ahmed Abd12ORCID

Affiliation:

1. Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain

2. Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt

Abstract

Globally, water contamination by heavy metals is a serious problem that affects the environment and human health. Adsorption is the most efficient way of water treatment for eliminating heavy metals. Various hydrogels have been prepared and used as adsorbents to remove heavy metals. By taking advantage of poly(vinyl alcohol) (PVA), chitosan (CS), cellulose (CE), and the process for physical crosslinking, we propose a simple method to prepare a PVA-CS/CE composite hydrogel adsorbent for the removal of Pb(II), Cd(II), Zn(II) and Co(II) from water. Structural analyses of the adsorbent were examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis, and X-ray diffraction (XRD). PVA-CS/CE hydrogel beads had a good spherical shape together with a robust structure and suitable functional groups for the adsorption of heavy metals. The effects of adsorption parameters such as pH, contact time, adsorbent dose, initial concentration of metal ions, and temperature on the adsorption capacity of PVA-CS/CE adsorbent were studied. The adsorption characteristics of PVA-CS/CE for heavy metals may be completely explained by pseudo-second-order adsorption and the Langmuir adsorption model. The removal efficiency of PVA-CS/CE adsorbent for Pb(II), Cd(II), Zn(II), and Co(II) was 99, 95, 92, and 84%, respectively, within 60 min. The heavy metal’s hydrated ionic radius may be crucial in determining the adsorption preference. After five consecutive adsorption–desorption cycles, the removal efficiency remained over 80%. As a result, the outstanding adsorption-desorption properties of PVA-CS/CE can potentially be extended to industrial wastewater for heavy metal ion removal.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3